75 research outputs found

    Chemical-Biology-derived in vivo Sensors: Past, Present, and Future.

    Get PDF
    To understand the complex biochemistry and biophysics of biological systems, one needs to be able to monitor local concentrations of molecules, physical properties of macromolecular assemblies and activation status of signaling pathways, in real time, within single cells, and at high spatio-temporal resolution. Here we look at the tools that have been / are being / need to be provided by chemical biology to address these challenges. In particular, we highlight the utility of molecular probes that help to better measure mechanical forces and flux through key signalling pathways. Chemical biology can be used to both build biosensors to visualize, but also actuators to perturb biological processes. An emergent theme is the possibility to multiplex measurements of multiple cellular processes. Advances in microscopy automation now allow us to acquire datasets for 1000's of cells. This produces high dimensional datasets that require computer vision approaches that automate image analysis. The high dimensionality of these datasets are often not immediately accessible to human intuition, and, similarly to 'omics technologies, require statistical approaches for their exploitation. The field of biosensor imaging is therefore experiencing a multidisciplinary transition that will enable it to realize its full potential as a tool to provide a deeper appreciation of cell physiology

    LITOS: a versatile LED illumination tool for optogenetic stimulation.

    Get PDF
    Optogenetics has become a key tool to manipulate biological processes with high spatio-temporal resolution. Recently, a number of commercial and open-source multi-well illumination devices have been developed to provide throughput in optogenetics experiments. However, available commercial devices remain expensive and lack flexibility, while open-source solutions require programming knowledge and/or include complex assembly processes. We present a LED Illumination Tool for Optogenetic Stimulation (LITOS) based on an assembled printed circuit board controlling a commercially available 32 × 64 LED matrix as illumination source. LITOS can be quickly assembled without any soldering, and includes an easy-to-use interface, accessible via a website hosted on the device itself. Complex light stimulation patterns can easily be programmed without coding expertise. LITOS can be used with different formats of multi-well plates, petri dishes, and flasks. We validated LITOS by measuring the activity of the MAPK/ERK signaling pathway in response to different dynamic light stimulation regimes using FGFR1 and Raf optogenetic actuators. LITOS can uniformly stimulate all the cells in a well and allows for flexible temporal stimulation schemes. LITOS's affordability and ease of use aims at democratizing optogenetics in any laboratory

    Two Distinct Filopodia Populations at the Growth Cone Allow to Sense Nanotopographical Extracellular Matrix Cues to Guide Neurite Outgrowth

    Get PDF
    The process of neurite outgrowth is the initial step in producing the neuronal processes that wire the brain. Current models about neurite outgrowth have been derived from classic two-dimensional (2D) cell culture systems, which do not recapitulate the topographical cues that are present in the extracellular matrix (ECM) in vivo. Here, we explore how ECM nanotopography influences neurite outgrowth

    Flavonoids from Ericameria nauseosa inhibiting PI3K/AKT pathway in human melanoma cells.

    Get PDF
    The PI3K/AKT and MAPK/ERK pathways are frequently mutated in metastatic melanoma. In a screen of over 2500 plant extracts, the dichloromethane extract of Ericameria nauseosa significantly inhibited oncogenic activity of AKT in MM121224 human melanoma cells. This extract was analyzed by analytical HPLC, and the column effluent was fractionated and tested for activity to generate the so-called HPLC-based activity profile. Compounds eluting within active time-windows of the chromatogram were subsequently isolated in a larger scale to afford 11 flavones (1-11), four flavanones (12-15), two diterpenes (16, 17), and a seco-caryophyllene (18). All isolated compounds were tested for activity, whereby only flavonoids were found active. Of these, flavones were shown to be more active than the flavanones. The most potent flavone was compound 9, that was displaying an IC50 of 14.7 ± 1.4 µM on AKT activity in MM121224 cells. The terpenoids (16-18) were found to be inactive in the assay. Both diterpenes, a grindelic acid derivative (16) and an ent-neo-clerodane (17) were identified as new natural products. Their absolute configuration was established by ECD. Compound 17 is the first description of a clerodane type diterpene in the genus Ericameria

    Optogenetic actuator - ERK biosensor circuits identify MAPK network nodes that shape ERK dynamics.

    Get PDF
    Combining single-cell measurements of ERK activity dynamics with perturbations provides insights into the MAPK network topology. We built circuits consisting of an optogenetic actuator to activate MAPK signaling and an ERK biosensor to measure single-cell ERK dynamics. This allowed us to conduct RNAi screens to investigate the role of 50 MAPK proteins in ERK dynamics. We found that the MAPK network is robust against most node perturbations. We observed that the ERK-RAF and the ERK-RSK2-SOS negative feedback operate simultaneously to regulate ERK dynamics. Bypassing the RSK2-mediated feedback, either by direct optogenetic activation of RAS, or by RSK2 perturbation, sensitized ERK dynamics to further perturbations. Similarly, targeting this feedback in a human ErbB2-dependent oncogenic signaling model increased the efficiency of a MEK inhibitor. The RSK2-mediated feedback is thus important for the ability of the MAPK network to produce consistent ERK outputs, and its perturbation can enhance the efficiency of MAPK inhibitors

    p190RhoGAP negatively regulates Rho activity at the cleavage furrow of mitotic cells

    Get PDF
    Previous studies demonstrated that p190RhoGAP (p190) negatively affects cytokinesis in a Rho-GAP-dependent manner, suggesting that regulation of Rho may be a critical mechanism of p190 action during cytokinesis. P190 localizes to the cleavage furrow (CF) of dividing cells, and its levels decrease during late mitosis by an ubiquitin-mediated mechanism, consistent with the hypothesis that high RhoGTP levels are required for completion of cytokinesis. To determine whether RhoGTP levels in the CF are affected by p190 and to define the phase(s) of cytokinesis in which p190 is involved, we used FRET analysis alone or in combination with time lapse microscopy. In normal cell division activated Rho accumulated at the cell equator in early anaphase and in the contractile ring, where it co-localized with p190. Real-time movies revealed that cells expressing elevated levels of p190 exhibited multiple cycles of abnormal CF site selection and ingression/regression, which resulted in failed or prolonged cytokinesis. This was accompanied by mislocalization of active Rho at the aberrant CF sites. Quantified data revealed that in contrast to ECT2 and dominate negative p190 (Y1283Ap190), which resulted in hyper-activated Rho, Rho activity in the CF was reduced by wild type p190 in a dose-dependent manner. These results suggest that p190 regulates cytokinesis through modulation of Rho-GTP levels, thereby affecting CF specification site selection and subsequent ring contraction

    Automatic detection of spatio-temporal signaling patterns in cell collectives.

    Get PDF
    Increasing experimental evidence points to the physiological importance of space-time correlations in signaling of cell collectives. From wound healing to epithelial homeostasis to morphogenesis, coordinated activation of biomolecules between cells allows the collectives to perform more complex tasks and to better tackle environmental challenges. To capture this information exchange and to advance new theories of emergent phenomena, we created ARCOS, a computational method to detect and quantify collective signaling. We demonstrate ARCOS on cell and organism collectives with space-time correlations on different scales in 2D and 3D. We made a new observation that oncogenic mutations in the MAPK/ERK and PIK3CA/Akt pathways of MCF10A epithelial cells hyperstimulate intercellular ERK activity waves that are largely dependent on matrix metalloproteinase intercellular signaling. ARCOS is open-source and available as R and Python packages. It also includes a plugin for the napari image viewer to interactively quantify collective phenomena without prior programming experience

    Automated quantification of morphodynamics for high-throughput live cell time-lapse dataset

    Full text link
    We present a fully automatic method to track and quantify the morphodynamics of differentiating neurons in uorescence time-lapse microscopy datasets. While previous efforts have successfully quantified the dynamics of organelles such as the cell body, nucleus, or chromosomes of cultured cells, neurons have proved to be uniquely challenging due to their highly deformable neurites which expand, branch, and collapse. Our approach is capable of robustly detecting, tracking, and segmenting all the components of each neuron present in the sequence including the nucleus, soma, neurites, and filopodia. To meet the demands required for high-throughput processing, our framework is designed tobe extremely effcient, capable of processing a single image in approximately two seconds on a conventional notebook computer. For validation of our approach, we analyzed neuronal differentiation datasets in which a set of genes was perturbed using RNA interference. Our analysis confirms previous quantitative findings measured from static images, as well as previous qualitative observations of morphodynamic phenotypes that could not be measured on a large scale. Finally, we present new observations about the behavior of neurons made possible by our quantitative analysis, which are not immediately obvious to a human observer

    Network-based identification of feedback modules that control RhoA activity and cell migration

    Get PDF
    Cancer cell migration enables metastatic spread causing most cancer deaths. Rho-family GTPases control cell migration, but being embedded in a highly interconnected feedback network, the control of their dynamical behavior during cell migration remains elusive. To address this question, we reconstructed the Rho-family GTPases signaling network involved in cell migration, and developed a Boolean network model to analyze the different states and emergent rewiring of the Rho-family GTPases signaling network at protrusions and during extracellular matrix-dependent cell migration. Extensive simulations and experimental validations revealed that the bursts of RhoA activity induced at protrusions by EGF are regulated by a negative-feedback module composed of Src, FAK, and CSK. Interestingly, perturbing this module interfered with cyclic Rho activation and extracellular matrix-dependent migration, suggesting that CSK inhibition can be a novel and effective intervention strategy for blocking extracellular matrix-dependent cancer cell migration, while Src inhibition might fail, depending on the genetic background of cells. Thus, this study provides new insights into the mechanisms that regulate the intricate activation states of Rho-family GTPases during extracellular matrix-dependent migration, revealing potential new targets for interfering with extracellular matrix-dependent cancer cell migratio
    • …
    corecore